课程中文名称: 误差理论与测量平差基础 课程英文名称:Error Theory and Foundation of Surveying Adjustment 课程类别:必修 课程学分数:3 课程学时数:54 授课对象:第2学年,第4学期测绘专业本科生 本课程的前导课程:测绘学概论、数字测图原理、高等数学、线性代数、概率论与数理统计 一、 教学目的和要求 误差理论与测量平差基础是一门专业基础课,以培养学生掌握测量数据处理的基本方法和原理为目的。课程内容包括误差理论和测量平差基础两部分,误差理论主要讲授测量误差的来源、分类、性质、分布、数字特征、传播及主要应用,以误差分布、数字特征及传播律为重点。测量平差基础主要讲授经典测量平差的基本原理、方法、估计理论及精度评定。在教学过程中,这些内容互相联系,互为基础,使学生能掌握误差理论和测量平差的基本知识,处理测量误差的基本理论,数据处理的基本原理和方法。为进一步研究测量数据处理理论和后续课程打下坚实的基础。 二、 课程内容与学时分配 课程内容与学时分配表 第一章 绪论 第一节 观测误差 内容:测量误差的概念、观测误差来源、分类。 第二节 测量平差学科的研究对象 内容:研究对象。 第三节 测量平差的简史和发展 内容:发展史。 第四节 本课程的任务和内容 内容:主要内容。 重点讲授
测量误差的概念、测量平差的主要内容等。
第二章 误差分布与精度指标
第一节 正态分布 内容:测量误差的正态分布。 第二节 偶然误差的规律性 内容:偶然误差的特性及规律性。 第三节 衡量精度的指标 内容:中误差的概念。 第四节 精度、准确度与精确度 内容:精度、准确度与精确度的概念及联系。 第五节 测量不确定度 重点讲授
偶然误差的分布、规律性和数字特征。 第三章 协方差传播律及权 第一节 数学期望的传播 内容:数学期望的概念。 第二节 协方差传播律 内容:协方差传播律。 第三节 协方差传播律的应用 内容:应用。 第四节 权与定权的常用方法 内容:权的定义、常用的定权方法。 第五节 协因数和协因数传播律 内容:协因数传播律。 第六节 由真误差计算中误差的实际应用 内容:应用举例。 第七节 系统误差的传播 重点讲授 协方差、协因数的概念、传播律及应用;权的概念及定权的常用方法。 第四章
平差数学模型与最小二乘原理 第一节 测量平差概述 内容:测量平差的概念。 第二节 函数模型 内容:函数模型的概念。 第三节 函数模型的线性化 内容:函数模型的线性化。 第四节 测量平差的数学模型 内容:随机模型的概念。 第五节 参数估计与最小二乘原理 内容:参数估计与最小二乘原理。 重点讲授 测量平差的函数模型、随机模型;参数估计及最小二乘原理。 第五章 条件平差 第一节 条件平差原理 内容:条件平差原理。 第二节 条件方程 内容:条件方程的个数及列立。 第三节 精度评定 内容:条件平差的精度评定。 第四节 条件平差公式汇编和水准网平差示例 内容:公式汇编和水准网平差示例 重点讲授
条件平差的基本原理、条件方程的列立和精度评定。 第六章 附有参数的条件平差 第一节 附有参数的条件平差原理 内容:平差原理。 第二节 精度评定 内容:精度评定。 第三节 公式汇编和示例 内容:公式汇编和举例。 重点讲授
附有参数的条件平差原理。 第七章 间接平差 第一节 间接平差原理 内容:间接平差原理。 第二节 误差方程 内容:误差方程的列立。 第三节 精度评定 内容:精度评定公式及应用。 第四节 间接平差公式汇编和水准网平差示例 内容:公式汇编和水准网平差示例 第五节 间接平差特例——直接平差 内容:公式汇编和水准网平差。 第六节 三角网坐标平差 内容:测角网坐标平差举例。 第七节 测边网坐标平差 内容:测边网坐标平差举例。 第八节 导线网坐标平差 内容:导线网坐标平差举例。 第九节 GPS网坐标平差 内容:GPS网坐标平差举例。 重点讲授 间接平差原理、误差方程的列立、精度评定及各类测量控制网坐标平差的示例。 第八章 附有限制条件的间接平差 第一节 附有限制条件的间接平差原理 内容:测量误差的概念、观测误差来源、分类。 第二节 精度评定 内容:测量误差的概念、观测误差来源、分类。 第三节 公式汇编和示例 内容:测量误差的概念、观测误差来源、分类。 重点讲授 附有限制条件的间接平差原理。 第九章 概括平差函数模型 第一节 基本平差方法的概括函数模型 内容:概括函数模型的形式。 第二节 附有限制条件的条件平差原理 内容:平差原理。 第三节 精度评定 内容:精度评定。 第四节 各种平差方法的共性与特性 内容:平差方法的共性。 第五节 平差结果的统计性质 内容:平差结果的统计性质。 重点讲授 各种平差方法的共性与特性,平差结果的统计性质。 第十章 误差椭圆 第一节 概述 内容:概述。 第二节 点位误差 内容:点位误差的概念。 第三节 误差曲线 内容:误差曲线的概念。 第四节 误差椭圆 内容:误差椭圆的应用。 第五节 相对误差椭圆 内容:相对误差椭圆的应用。 第六节 点位落入误差椭圆内的概率 重点讲授 点位误差的概念、误差椭圆的求法及应用。 三、 教材与参考书 教
材:《误差理论与测量平差基础》,武汉大学出版社,武汉大学测绘学院测量平差学科组, 2003。 参考书:[1] 《测量平差基础》,测绘出版社,武汉测绘科技大学大地测量系,1978。 [2]
《测量平差原理》,武汉测绘科技大学出版社,於宗俦等, 1990。 [3] 《测量平差基础》,(第三版)测绘出版社,武汉测绘科技大学测量平差教研室等,1996。 [4]
《误差理论与测量平差基础习题集》, 武汉大学出版社,武汉大学测绘学院测量平差学科组, 2005 。
|